Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2891, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570514

RESUMEN

Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.


Asunto(s)
Dopamina , Núcleo Interpeduncular , Ratones , Animales , Dopamina/metabolismo , Tegmento Mesencefálico/metabolismo , Núcleo Interpeduncular/metabolismo , Transmisión Sináptica , Neuronas GABAérgicas/metabolismo
2.
Sci Adv ; 9(49): eadh9620, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055830

RESUMEN

Stress coping involves innate and active motivational behaviors that reduce anxiety under stressful situations. However, the neuronal bases directly linking stress, anxiety, and motivation are largely unknown. Here, we show that acute stressors activate mouse GABAergic neurons in the interpeduncular nucleus (IPN). Stress-coping behavior including self-grooming and reward behavior including sucrose consumption inherently reduced IPN GABAergic neuron activity. Optogenetic silencing of IPN GABAergic neuron activation during acute stress episodes mimicked coping strategies and alleviated anxiety-like behavior. In a mouse model of stress-enhanced motivation for sucrose seeking, photoinhibition of IPN GABAergic neurons reduced stress-induced motivation for sucrose, whereas photoactivation of IPN GABAergic neurons or excitatory inputs from medial habenula potentiated sucrose seeking. Single-cell sequencing, fiber photometry, and optogenetic experiments revealed that stress-activated IPN GABAergic neurons that drive motivated sucrose seeking express somatostatin. Together, these data suggest that stress induces innate behaviors and motivates reward seeking to oppose IPN neuronal activation as an anxiolytic stress-coping mechanism.


Asunto(s)
Motivación , Animales , Ratones , Ansiedad/etiología , Neuronas GABAérgicas , Recompensa , Sacarosa
3.
Neuroscience ; 529: 172-182, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572877

RESUMEN

While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.


Asunto(s)
Acetilcolina , Habénula , Ratones , Animales , Acetilcolina/farmacología , Habénula/fisiología , Acetilcolinesterasa , Neuronas Colinérgicas/fisiología , Colinérgicos/farmacología
4.
Elife ; 122023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971355

RESUMEN

The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off-target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off-target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.


Asunto(s)
ARN , Semen , Ratones , Masculino , Animales , Ratones Transgénicos , ARN/metabolismo , Semen/metabolismo , Integrasas/genética , Integrasas/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Mamíferos/genética
5.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599671

RESUMEN

Midbrain dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are engaged by rewarding stimuli and encode reward prediction error to update goal-directed learning. However, recent data indicate that VTA DAergic neurons are functionally heterogeneous with emerging roles in aversive signaling, salience, and novelty, based in part on anatomic location and projection, highlighting a need to functionally characterize the repertoire of VTA DAergic efferents in motivated behavior. Previous work identifying a mesointerpeduncular circuit consisting of VTA DAergic neurons projecting to the interpeduncular nucleus (IPN), a midbrain area implicated in aversion, anxiety-like behavior, and familiarity, has recently come into question. To verify the existence of this circuit, we combined presynaptic targeted and retrograde viral tracing in the dopamine transporter-Cre mouse line. Consistent with previous reports, synaptic tracing revealed that axon terminals from the VTA innervate the caudal IPN; whereas, retrograde tracing revealed DAergic VTA neurons, predominantly in the paranigral region, project to the nucleus accumbens shell, as well as the IPN. To test whether functional DAergic neurotransmission exists in the IPN, we expressed the genetically encoded DA sensor, dLight 1.2, in the IPN of C57BL/6J mice and measured IPN DA signals in vivo during social and anxiety-like behavior using fiber photometry. We observed an increase in IPN DA signal during social investigation of a novel but not familiar conspecific and during exploration of the anxiogenic open arms of the elevated plus maze. Together, these data confirm VTA DAergic neuron projections to the IPN and implicate this circuit in encoding motivated exploration.


Asunto(s)
Núcleo Interpeduncular , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/fisiología , Dopamina , Ratones Endogámicos C57BL , Núcleo Accumbens , Neuronas Dopaminérgicas/fisiología
6.
Neuropsychopharmacology ; 47(3): 641-651, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34326477

RESUMEN

A critical brain area implicated in nicotine dependence is the interpeduncular nucleus (IPN) located in the ventral midbrain and consisting primarily of GABAergic neurons. Previous studies indicate that IPN GABAergic neurons contribute to expression of somatic symptoms of nicotine withdrawal; however, whether IPN neurons are dynamically regulated during withdrawal in vivo and how this may contribute to both somatic and affective withdrawal behavior is unknown. To bridge this gap in knowledge, we expressed GCaMP in IPN GABAergic neurons and used in vivo fiber photometry to record changes in fluorescence, as a proxy for neuronal activity, in male mice during nicotine withdrawal. Mecamylamine-precipitated withdrawal significantly increased activity of IPN GABAergic neurons in nicotine-dependent, but not nicotine-naive mice. Analysis of GCaMP signals time-locked with somatic symptoms including grooming and scratching revealed reduced IPN GABAergic activity during these behaviors, specifically in mice undergoing withdrawal. In the elevated plus maze, used to measure anxiety-like behavior, an affective withdrawal symptom, IPN GABAergic neuron activity was increased during open-arm versus closed-arm exploration in nicotine-withdrawn, but not non-withdrawn mice. Optogenetic silencing IPN GABAergic neurons during withdrawal significantly reduced withdrawal-induced increases in somatic behavior and increased open-arm exploration. Together, our data indicate that IPN GABAergic neurons are dynamically regulated during nicotine withdrawal, leading to increased anxiety-like symptoms and somatic behavior, which inherently decrease IPN GABAergic neuron activity as a withdrawal-coping mechanism. These results provide a neuronal basis underlying the role of the IPN in the expression of somatic and affective behaviors of nicotine withdrawal.


Asunto(s)
Núcleo Interpeduncular , Síndrome de Abstinencia a Sustancias , Animales , Neuronas GABAérgicas , Núcleo Interpeduncular/metabolismo , Masculino , Mecamilamina/farmacología , Ratones , Nicotina/farmacología , Síndrome de Abstinencia a Sustancias/metabolismo
7.
Front Cell Neurosci ; 15: 742207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867199

RESUMEN

The nucleus accumbens (NAc) is a forebrain region mediating the positive-reinforcing properties of drugs of abuse, including alcohol. It receives glutamatergic projections from multiple forebrain and limbic regions such as the prefrontal cortex (PFCx) and basolateral amygdala (BLA), respectively. However, it is unknown how NAc medium spiny neurons (MSNs) integrate PFCx and BLA inputs, and how this integration is affected by alcohol exposure. Because progress has been hampered by the inability to independently stimulate different pathways, we implemented a dual wavelength optogenetic approach to selectively and independently stimulate PFCx and BLA NAc inputs within the same brain slice. This approach functionally demonstrates that PFCx and BLA inputs synapse onto the same MSNs where they reciprocally inhibit each other pre-synaptically in a strict time-dependent manner. In alcohol-naïve mice, this temporal gating of BLA-inputs by PFCx afferents is stronger than the reverse, revealing that MSNs prioritize high-order executive processes information from the PFCx. Importantly, binge alcohol drinking alters this reciprocal inhibition by unilaterally strengthening BLA inhibition of PFCx inputs. In line with this observation, we demonstrate that in vivo optogenetic stimulation of the BLA, but not PFCx, blocks binge alcohol drinking escalation in mice. Overall, our results identify NAc MSNs as a key integrator of executive and emotional information and show that this integration is dysregulated during binge alcohol drinking.

8.
Neurobiol Learn Mem ; 176: 107323, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053429

RESUMEN

Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Conducta Exploratoria/fisiología , Mesencéfalo/fisiología , Red Nerviosa/fisiología , Reconocimiento en Psicología/fisiología , Animales , Habituación Psicofisiológica , Humanos , Ratones , Núcleos del Rafe/fisiología , Ratas
9.
Biol Psychiatry ; 88(11): 855-866, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800629

RESUMEN

BACKGROUND: Dopamine (DA) is hypothesized to modulate anxiety-like behavior, although the precise role of DA in anxiety behaviors and the complete anxiety network in the brain have yet to be elucidated. Recent data indicate that dopaminergic projections from the ventral tegmental area (VTA) innervate the interpeduncular nucleus (IPN), but how the IPN responds to DA and what role this circuit plays in anxiety-like behavior are unknown. METHODS: We expressed a genetically encoded G protein-coupled receptor activation-based DA sensor in mouse midbrain to detect DA in IPN slices using fluorescence imaging combined with pharmacology. Next, we selectively inhibited or activated VTA→IPN DAergic inputs via optogenetics during anxiety-like behavior. We used a biophysical approach to characterize DA effects on neural IPN circuits. Site-directed pharmacology was used to test if DA receptors in the IPN can regulate anxiety-like behavior. RESULTS: DA was detected in mouse IPN slices. Silencing/activating VTA→IPN DAergic inputs oppositely modulated anxiety-like behavior. Two neuronal populations in the ventral IPN (vIPN) responded to DA via D1 receptors (D1Rs). vIPN neurons were controlled by a small population of D1R neurons in the caudal IPN that directly respond to VTA DAergic terminal stimulation and innervate the vIPN. IPN infusion of a D1R agonist and antagonist bidirectionally controlled anxiety-like behavior. CONCLUSIONS: VTA DA engages D1R-expressing neurons in the caudal IPN that innervate vIPN, thereby amplifying the VTA DA signal to modulate anxiety-like behavior. These data identify a DAergic circuit that mediates anxiety-like behavior through unique IPN microcircuitry.


Asunto(s)
Dopamina , Núcleo Interpeduncular , Animales , Ansiedad , Neuronas Dopaminérgicas , Mesencéfalo , Ratones , Área Tegmental Ventral
10.
Sci Rep ; 10(1): 813, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965003

RESUMEN

Tobacco use is the leading preventable cause of mortality in the world. The limited number of smoking cessation aids currently available are minimally effective, highlighting the need for novel therapeutic interventions. We describe a genome-wide approach to identify potential candidates for such interventions. Next-generation sequencing was performed using RNA isolated from the habenulo-interpeduncular circuit of male mice withdrawn from chronic nicotine treatment. This circuit plays a central role in the nicotine withdrawal response. Differentially expressed miRNAs and mRNAs were validated using RT-qPCR. Many of the differentially expressed mRNAs are predicted targets of reciprocally expressed miRNAs. We illustrate the utility of the dataset by demonstrating that knockdown in the interpeduncular nucleus of a differentially expressed mRNA, that encoding profilin 2, is sufficient to induce anxiety-related behavior. Importantly, profilin 2 knockdown in the ventral tegmental area did not affect anxiety behavior. Our data reveal wide-spread changes in gene expression within the habenulo-interpeduncular circuit during nicotine withdrawal. This dataset should prove to be a valuable resource leading to the identification of substrates for the design of innovative smoking cessation aids.


Asunto(s)
Habénula/fisiología , Núcleo Interpeduncular/fisiología , MicroARNs/genética , Nicotina , ARN Mensajero/genética , Síndrome de Abstinencia a Sustancias/genética , Animales , Ansiedad/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones Endogámicos C57BL , Profilinas/genética
11.
Neuropsychopharmacology ; 45(2): 384-393, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31277075

RESUMEN

Dopamine (DA) signaling is critical for movement, motivation, and addictive behavior. The neuronal GTPase, Rit2, is enriched in DA neurons (DANs), binds directly to the DA transporter (DAT), and is implicated in several DA-related neuropsychiatric disorders. However, it remains unknown whether Rit2 plays a role in either DAergic signaling and/or DA-dependent behaviors. Here we leveraged the TET-OFF system to conditionally silence Rit2 in Pitx3IRES2-tTA mouse DANs. Following DAergic Rit2 knockdown (Rit2-KD), mice displayed an anxiolytic phenotype, with no change in baseline locomotion. Further, males exhibited increased acute cocaine sensitivity, whereas DAergic Rit2-KD suppressed acute cocaine sensitivity in females. DAergic Rit2-KD did not affect presynaptic TH and DAT protein levels in females, nor was TH was affected in males; however, DAT was significantly diminished in males. Paradoxically, despite decreased DAT levels in males, striatal DA uptake was enhanced, but was not due to enhanced DAT surface expression in either dorsal or ventral striatum. Finally, patch recordings in nucleus accumbens (NAcc) medium spiny neurons (MSNs) revealed reciprocal changes in spontaneous EPSP (sEPSP) frequency in male and female D1+ and D2+ MSNs following DAergic Rit2-KD. In males, sEPSP frequency was decreased in D1+, but not D2+, MSNs, whereas in females sEPSP frequency decreased in D2+, but not D1+, MSNs. Moreover, DAergic Rit2-KD abolished the ability of cocaine to reduce sEPSP frequency in D1+, but not D2+, male MSNs. Taken together, our studies are among the first to acheive AAV-mediated, conditional and inducible DAergic knockdown in vivo. Importantly, our results provide the first evidence that DAergic Rit2 expression differentially impacts striatal function and DA-dependent behaviors in males and females.


Asunto(s)
Cocaína/administración & dosificación , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Silenciador del Gen/fisiología , Proteínas de Unión al GTP Monoméricas/deficiencia , Caracteres Sexuales , Animales , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HEK293 , Humanos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Técnicas de Cultivo de Órganos
12.
Nat Neurosci ; 22(7): 1075-1088, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209379

RESUMEN

Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.


Asunto(s)
Proteína ADAM10/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Receptor 1 de Quimiocinas CX3C/fisiología , Quimiocina CX3CL1/fisiología , Proteínas de la Membrana/fisiología , Microglía/fisiología , Corteza Sensoriomotora/fisiopatología , Tacto/fisiología , Vibrisas/lesiones , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Receptor 1 de Quimiocinas CX3C/deficiencia , Receptor 1 de Quimiocinas CX3C/genética , Recuento de Células , Femenino , Regulación de la Expresión Génica , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas Analíticas Microfluídicas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Corteza Sensoriomotora/metabolismo , Corteza Sensoriomotora/patología , Transducción de Señal/fisiología , Análisis de la Célula Individual , Transcriptoma , Vibrisas/fisiología
13.
Handb Exp Pharmacol ; 248: 187-212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423839

RESUMEN

Ethanol and nicotine can modulate the activity of several neurotransmitter systems and signalling pathways. Interactions between ethanol and nicotine can also occur via common molecular targets including nicotinic acetylcholine receptors (nAChRs). These effects can induce molecular and synaptic adaptations that over time, are consolidated in brain circuits that reinforce drug-seeking behavior, contribute to the development of withdrawal symptoms during abstinence and increase the susceptibility to relapse. This chapter will discuss the acute and chronic effects of ethanol and nicotine within the mesolimbic reward pathway and brain circuits involved in learning, memory, and withdrawal. Individual and common molecular targets of ethanol and nicotine within these circuits are also discussed. Finally, we review studies that have identified potential molecular and neuronal processes underlying the high incidence of ethanol and nicotine co-use that may contribute to the development of ethanol and nicotine co-addiction.


Asunto(s)
Etanol/farmacología , Nicotina/farmacología , Receptores Nicotínicos , Síndrome de Abstinencia a Sustancias , Tabaquismo , Interacciones Farmacológicas , Humanos
14.
Nat Neurosci ; 20(9): 1260-1268, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714952

RESUMEN

Novelty preference (NP) is an evolutionarily conserved, essential survival mechanism often dysregulated in neuropsychiatric disorders. NP is mediated by a motivational dopamine signal that increases in response to novel stimuli, thereby driving exploration. However, the mechanism by which once-novel stimuli transition to familiar stimuli is unknown. Here we describe a neuroanatomical substrate for familiarity signaling, the interpeduncular nucleus (IPN) of the midbrain, which is activated as novel stimuli become familiar with multiple exposures. In mice, optogenetic silencing of IPN neurons increases salience of and interaction with familiar stimuli without affecting novelty responses, whereas photoactivation of the same neurons reduces exploration of novel stimuli mimicking familiarity. Bidirectional control of NP by the IPN depends on familiarity signals and novelty signals arising from excitatory habenula and dopaminergic ventral tegmentum inputs, which activate and reduce IPN activity, respectively. These results demonstrate that familiarity signals through unique IPN circuitry that opposes novelty seeking to control NP.


Asunto(s)
Conducta de Elección/fisiología , Conducta Exploratoria/fisiología , Núcleo Interpeduncular/fisiología , Red Nerviosa/fisiología , Reconocimiento en Psicología/fisiología , Transducción de Señal/fisiología , Animales , Conducta de Elección/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Conducta Exploratoria/efectos de los fármacos , Núcleo Interpeduncular/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Optogenética/métodos , Técnicas de Cultivo de Órganos , Reconocimiento en Psicología/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
15.
J Neurosci ; 37(22): 5463-5474, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28473645

RESUMEN

Binge alcohol drinking, a behavior characterized by rapid repeated alcohol intake, is most prevalent in young adults and is a risk factor for excessive alcohol consumption and alcohol dependence. Although the alteration of synaptic plasticity is thought to contribute to this behavior, there is currently little evidence that this is the case. We used drinking in the dark (DID) as a model of binge alcohol drinking to assess its effects on spike timing-dependent plasticity (STDP) in medium spiny neurons (MSNs) of the core nucleus accumbens (NAc) by combining patch-clamp recordings with calcium imaging and optogenetics. After 2 weeks of daily alcohol binges, synaptic plasticity was profoundly altered. STDP in MSNs expressing dopamine D1 receptors shifted from spike-timing-dependent long-term depression (tLTD), the predominant form of plasticity in naive male mice, to spike-timing-dependent long-term potentiation (tLTP) in DID mice, an effect that was totally reversed in the presence of 4 µm SCH23390, a dopamine D1 receptor antagonist. In MSNs presumably expressing dopamine D2 receptors, tLTP, the main form of plasticity in naive mice, was inhibited in DID mice. Interestingly, 1 µm sulpiride, a D2 receptor antagonist, restored tLTP. Although we observed no alterations of AMPA and NMDA receptor properties, we found that the AMPA/NMDA ratio increased at cortical and amygdaloid inputs but not at hippocampal inputs. Also, DID effects on STDP were accompanied by lower dendritic calcium transients. These data suggest that the role of dopamine in mediating the effects of binge alcohol drinking on synaptic plasticity of NAc MSNs differs markedly whether these neurons belong to the direct or indirect pathways.SIGNIFICANCE STATEMENT We examined the relationship between binge alcohol drinking and spike timing-dependent plasticity in nucleus accumbens (NAc) neurons. We found that repeated drinking bouts modulate differently synaptic plasticity in medium spiny neurons of the accumbens direct and indirect pathways. While timing-dependent long-term depression switches to long-term potentiation (LTP) in the former, timing-dependent LTP is inhibited in the latter. These effects are not accompanied by changes in AMPA and NMDA receptor properties at cortical, amygdaloid, and hippocampal synapses. Interestingly, dopamine D1 and D2 receptor antagonists have opposite effects on plasticity. Our data show that whether core NAc medium spiny neurons belong to the direct or indirect pathways determines the form of spike timing-dependent plasticity (STDP), the manner by which STDP responds to binge alcohol drinking, and its sensitivity to dopamine receptor antagonists.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Plasticidad Neuronal , Núcleo Accumbens/fisiopatología , Receptores Dopaminérgicos/metabolismo , Transmisión Sináptica , Potenciales de Acción , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiopatología , Transducción de Señal , Sinapsis/metabolismo
16.
Front Cell Neurosci ; 11: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243192

RESUMEN

Voltage-gated sodium channels are essential for generating the initial rapid depolarization of neuronal membrane potential during action potentials (APs) that enable cell-to-cell communication, the propagation of signals throughout the brain, and the induction of synaptic plasticity. Although all brain neurons express one or several variants coding for the core pore-forming sodium channel α subunit, the expression of the ß (ß1-4) auxiliary subunits varies greatly. Of particular interest is the ß4 subunit, encoded by the Scn4b gene, that is highly expressed in dorsal and ventral (i.e., nucleus accumbens - NAc) striata compared to other brain regions, and that endows sodium channels with unique gating properties. However, its role on neuronal activity, synaptic plasticity, and behaviors related to drugs of abuse remains poorly understood. Combining whole-cell patch-clamp recordings with two-photon calcium imaging in Scn4b knockout (KO) and knockdown mice, we found that Scn4b altered the properties of APs in core accumbens medium spiny neurons (MSNs). These alterations are associated with a reduction of the probability of MSNs to evoke spike-timing-dependent long-term depression (tLTD) and a reduced ability of backpropagating APs to evoke dendritic calcium transients. In contrast, long-term potentiation (tLTP) remained unaffected. Interestingly, we also showed that amphetamine-induced locomotor activity was significantly reduced in male Scn4b KO mice compared to wild-type controls. Taken together, these data indicate that the Scn4b subunit selectively controls tLTD by modulating dendritic calcium transients evoked by backpropagating APs.

17.
Elife ; 62017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196335

RESUMEN

Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal 'quality of life'. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics.


Asunto(s)
Exposición a Riesgos Ambientales , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Exposición Paterna , Herencia Paterna , Xenobióticos/metabolismo , Animales , Resistencia a Medicamentos , Femenino , Inactivación Metabólica , Hígado/metabolismo , Masculino , Ratones , Análisis de Supervivencia
18.
Trends Pharmacol Sci ; 38(2): 169-180, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27890353

RESUMEN

While innovative modern neuroscience approaches have aided in discerning brain circuitry underlying negative emotional behaviors including fear and anxiety responses, how these circuits are recruited in normal and pathological conditions remains poorly understood. Recently, genetic tools that selectively manipulate single neuronal populations have uncovered an understudied circuit, the medial habenula (mHb)-interpeduncular (IPN) axis, that modulates basal negative emotional responses. Interestingly, the mHb-IPN pathway also represents an essential circuit that signals heightened anxiety induced by nicotine withdrawal. Insights into how this circuit interconnects with regions more classically associated with anxiety, and how chronic nicotine exposure induces neuroadaptations resulting in an anxiogenic state, may thereby provide novel strategies and molecular targets for therapies that facilitate smoking cessation, as well as for anxiety relief.


Asunto(s)
Trastornos de Ansiedad/etiología , Habénula/fisiología , Núcleo Interpeduncular/fisiología , Tabaquismo/etiología , Animales , Trastornos de Ansiedad/tratamiento farmacológico , Hormona Liberadora de Corticotropina/fisiología , Emociones , Humanos , Ratones , Receptores Nicotínicos/fisiología , Tabaquismo/tratamiento farmacológico , Área Tegmental Ventral/fisiología
19.
Alcohol ; 57: 65-70, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27793544

RESUMEN

The prevalent co-abuse of nicotine and alcohol suggests a common neural mechanism underlying the actions of the two drugs. Nicotine, the addictive component of tobacco, activates nicotinic acetylcholine receptors (nAChRs) containing the α6 subunit (α6* nAChRs) in dopaminergic (DAergic) neurons of the ventral tegmental area (VTA), a region known to be crucial for drug reward. Recent evidence suggests that ethanol may potentiate ACh activation of these receptors as well, although whether α6* nAChR expression is necessary for behavioral effects of acute ethanol exposure is unknown. We compared binge-like ethanol consumption and ethanol reward sensitivity between knockout (KO) mice that do not express chrna6 (the gene encoding the α6 nAChR subunit, the α6 KO line) and wild-type (WT) littermates using the Drinking-in-the-Dark (DID) and Conditioned Place Preference (CPP) assay, respectively. In the DID assay, α6 KO female and male mice consumed ethanol similarly to WT mice at all concentrations tested. In the CPP assay, 2.0-g/kg and 3.0-g/kg, but not 0.5-mg/kg, ethanol conditioned a place preference in WT female and male mice, whereas only 2.0-g/kg ethanol conditioned a place preference in α6 KO mice. Acute challenge with ethanol reduced locomotor activity, an effect that developed tolerance with repeated injections, similarly between genotypes in both female and male mice. Together, these data indicate that expression of α6* nAChRs is not required for binge-like ethanol consumption and reward, but modulate sensitivity to the rewarding properties of the drug.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Etanol/administración & dosificación , Subunidades de Proteína/deficiencia , Receptores Nicotínicos/deficiencia , Recompensa , Consumo de Bebidas Alcohólicas/psicología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Neuropharmacology ; 107: 294-304, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27020042

RESUMEN

Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4ß2 or α6ß2, but not α3ß4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics.


Asunto(s)
Ansiedad/metabolismo , Neuronas Colinérgicas/metabolismo , Habénula/metabolismo , Nicotina/efectos adversos , Receptores Nicotínicos/biosíntesis , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Ansiedad/psicología , Neuronas Colinérgicas/efectos de los fármacos , Habénula/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Nicotínicos/farmacología , Síndrome de Abstinencia a Sustancias/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...